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1 Probability on Finite Groups and Total Variation Distance

1.1 Basic Definitions

Let G be a finite set (often a finite group in our applications). A probability distribution (or
probability measure) on G is a function

P : G → [0, 1]

such that
∑

g∈G P (g) = 1.

Definition 1.1 (Total Variation Distance). For two probability distributions P and Q on G, the
total variation distance between them is defined as

∥P −Q∥TV = max
A⊆G

∣∣P (A)−Q(A)
∣∣.

Equivalently, it is well-known that

∥P −Q∥TV =
1

2

∑
g∈G

∣∣P (g)−Q(g)
∣∣ =

1

2
∥P −Q∥1,

where ∥ · ∥1 denotes the ℓ1-norm.
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Proof of equivalence. First, note that

max
A⊆G

∣∣P (A)−Q(A)
∣∣ = max

A⊆G

∣∣∣∣∑
g∈A

(
P (g)−Q(g)

)∣∣∣∣.
One can choose A to be the set of points g for which P (g)−Q(g) ≥ 0. Then

max
A⊆G

|P (A)−Q(A)| =
1

2

∑
g∈G

|P (g)−Q(g)|.

Hence the two definitions match.

1.2 Bounding Lemmas and Remarks

A common task is to bound ∥P − Q∥TV for certain special cases. For instance, if P and Q are
obtained by running a random walk on a group G for k steps, one often seeks an upper bound on
∥P −Q∥TV in terms of k and properties of G or of the step distribution.

Lemma 1.2 (Upper Bound Lemma, Diaconis-style). Suppose P and Q are probability measures on
G. In many scenarios, one has an upper bound on ∥P −Q∥TV by exploiting symmetry or Fourier
techniques (discussed below). In particular, if P and Q arise from repeated convolution of an initial
measure, character bounds can give rates of convergence to the uniform distribution.

Remark 1.3. The idea is that for a finite group G, one can write the difference P − Q in terms
of the irreducible characters of G. Each step of a random walk (a convolution by some driving
measure) dampens all but the trivial character. Estimating that damping gives explicit upper bounds
on ∥P −Q∥TV.

1.3 Example: A Special Case on a Cyclic Group

Let G = Z/nZ be the cyclic group of order n. If µ is a probability measure on G with some support
that generates the whole group (e.g., µ(1) = p, µ(0) = 1 − p, etc.), then repeated convolution
µ∗k tends to the uniform distribution u = (1/n, . . . , 1/n) as k → ∞. The total variation distance
∥µ∗k−u∥TV can often be bounded using discrete Fourier analysis, leading to explicit mixing times.

2 Fourier Analysis on Finite Groups

We now review some basics of the Fourier transform on finite groups, which is a key tool in bounding
total variation distances of random walks and in many other contexts.

2.1 Group Algebras and Irreducible Representations

Let G be a finite group of order |G|. Consider the complex vector space C[G], whose elements are
formal linear combinations of elements of G. Often, we identify C[G] with the space of complex-
valued functions on G, denoted L2(G) (with dimension |G|). The inner product on L2(G) is given
by

⟨f, h⟩ =
1

|G|
∑
g∈G

f(g)h(g).
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A representation of G on a complex vector space V is a group homomorphism ρ : G → GL(V ).
A representation is called irreducible if V has no nontrivial proper subrepresentation. Every finite
group has only finitely many irreducible representations up to isomorphism, say

ρ1, ρ2, . . . , ρr,

with dimensions d1, d2, . . . , dr, respectively. We have the fundamental fact (the orthogonality rela-
tions) that ∑

g∈G
χi(g)χj(g) = |G| δij ,

where χi(g) = trace(ρi(g)) is the character of the representation ρi.

2.2 Fourier Transform on a Finite Group

Definition 2.1 (Fourier Transform). For f ∈ L2(G), its Fourier transform is the tuple (of matrices)
given by

f̂(ρi) =
∑
g∈G

f(g) ρi(g), for each i = 1, 2, . . . , r.

Each f̂(ρi) is a di × di matrix. Collectively, the family {f̂(ρi)} encodes the frequencies of f along
each irreducible representation.

Theorem 2.2 (Plancherel’s Theorem for Finite Groups). The map f 7→ {f̂(ρi)} is an isometric
isomorphism from L2(G) onto the direct sum of the matrix spaces corresponding to the irreducible
representations of G. Concretely,

∥f∥2L2(G) =
1

|G|
∑
g∈G

|f(g)|2 =
1

|G|

r∑
i=1

di ∥f̂(ρi)∥2HS ,

where ∥ · ∥HS is the Hilbert–Schmidt norm on matrices.

Sketch of Proof. See, e.g., Serre’s Linear Representations of Finite Groups or any standard text
on representation theory of finite groups. The proof follows from the orthogonality relations of
characters and the fact that L2(G) decomposes into the direct sum of all irreducible representations,
each occurring with multiplicity equal to its dimension.

2.3 Fast Fourier Transform Techniques

For an abelian finite group G, all irreducible representations have dimension 1, so the Fourier
transform reduces to taking discrete characters. In particular, for G ∼= Z/nZ, the Fourier transform
is exactly the discrete Fourier transform (DFT) of length n. Algorithms like the Fast Fourier
Transform (FFT) compute this in O(n log n) time rather than the naive O(n2).

For certain nonabelian groups (e.g., some metabelian groups, Sn, etc.), there are analogs of
“fast” transforms but they may be more involved. The idea is to exploit the group structure and
the known block decomposition of the group algebra.
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3 Character Theory of Some Specific Groups

3.1 Example: The Symmetric Group S4

The group S4 (the permutations of 4 elements) has 5 conjugacy classes, typically labeled by cycle
type:

Cycle type (1)(2)(3)(4) (12) (12)(34) (123) (1234)

Class name 1A 2A 22 3A 4A
Size of class 1 6 3 8 6

Correspondingly, there are 5 irreducible representations of S4: the trivial representation, the
sign representation, the standard 3-dimensional representation, and two others. One can list their
characters in a 5× 5 table, known as the character table of S4. (Sometimes the notation for classes
differs, e.g. 1A, 2A, 2B, 3A, 4A, etc., but the concept is the same.)

3.2 Example: The Group SL2(Z3)

The group SL2(Z3) consists of all 2× 2 matrices with entries in the finite field Z3 and determinant
1. It is a nonabelian group of order 24. One can study its irreps either by direct construction or by
exploiting known isomorphisms (e.g. SL2(Z3) is isomorphic to the binary tetrahedral group, though
that may be more advanced).

A classical fact is that SL2(Z3) is not a direct product of smaller groups. One can see this from
its character table or from the fact that it is a perfect group of small order, etc.

Remark 3.1. Sometimes SL2(Z3) is related to A4 (the alternating group on 4 elements) via a
double cover or a projective representation, but these details go beyond a simple example. The
main point is that it has interesting representations of dimensions 1, 2, 3, etc., and they can be
understood by group-theoretic and character-theoretic methods.

4 Connections and Concluding Remarks

4.1 Mixing of Random Walks

A major application of Fourier analysis on finite groups is bounding the convergence of a random
walk to its stationary distribution. In the case of a group of order |G|, if we convolve an initial
distribution with a probability measure µ on G (assuming µ is a generating measure or has some
spectral gap), one often shows that:

∥µ∗k − u∥TV ≤ max
ρ ̸=trivial

∥∥ρ(µ)∥∥k,
where ∥ρ(µ)∥ is an operator norm (or something analogous) that measures how far the represen-
tation ρ is from annihilating µ. Since the trivial representation always has eigenvalue 1, all other
irreps typically have eigenvalues strictly less than 1 in absolute value (under suitable assumptions),
so this distance decays exponentially in k.

4.2 Summary

These notes touched on:
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• Total variation distance and its basic properties.

• Fourier transform on finite groups, including:

– Irreducible representations and characters,

– Plancherel’s theorem,

– Fast Fourier Transform for abelian (and some nonabelian) groups.

• Examples like cyclic groups, S4, and SL2(Z3).

In more advanced treatments, one uses these tools to derive mixing rates for random walks,
build fast algorithms for group-theoretic problems, and study the representation theory of more
complicated groups.
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